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ISTC for Cloud Computing
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$11.5M over 5 years + 4 Intel researchers.   Launched Sept 2011
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Big Data Performance Challenge

whenever the volume or velocity of data
overwhelms current processing systems/techniques, 

resulting in performance that falls far short of desired

Many other challenges, including:

• variety of data, veracity of data
• analytics algorithms that scale
• programming
• security, privacy
• insights from the data, visualization

This talk: Focus on performance as key challenge
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How to Tackle the 
Big Data Performance Challenge

Three approaches to improving performance by 
orders of magnitude are:

• Scale down the amount of data processed or 
the resources needed to perform the processing

• Scale up the computing resources on a node, 
via parallel processing & faster memory/storage

• Scale out the computing to distributed nodes 
in a cluster/cloud or at the edge
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Scale down the amount of data processed or 

the resources needed to perform the processing

Goal: Answer queries much faster/cheaper than 
brute force

• Specific query?

• Family of queries?

• Retrieval?

• With underlying common subquery (table)?

• Aggregation?

memoized answer

good index

materialized view

data cube

Important Scale Down tool: approximation 
(w/error guarantees)
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• Scale Down Insight: 
Often EXACT answers not required

– DSS applications usually exploratory: early feedback 
to help identify “interesting” regions

– Preview answers while waiting.  Trial queries

– Aggregate queries: precision to “last decimal” not 
needed

SQL Query

Exact Answer

Decision
Support 
Systems

(DSS) 
Long Response Times!

Big Data Queries circa 1995
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Often, only interested in leading digits of answer

E.g., Average salary for…

$59,152.25 (exact)                                         in 10 minutes

$59,000 +/- $500 (with 95% confidence)    in 10 seconds     

Fast Approximate Answers

Original
Data

(PB/TB)

Synopsis
(GB/MB)

statistical
summarization

Orders of magnitude speed-up because synopses 
are orders of magnitude smaller than original data
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The Aqua Architecture

Picture without Aqua 

Data

Ware-

house

SQL

Query Q

Network

Q

Result 
HTML

XML

Warehouse

Data Updates

Browser

Excel

[Sigmod’98,…]
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The Aqua Architecture

Picture with Aqua: 

– Aqua is middleware, between client & warehouse
(Client: + error bound reporting.  Warehouse SW: unmodified)

– Aqua Synopses are stored in the warehouse

– Aqua intercepts the user query and rewrites it to be a query Q’ 
on the synopses.  Data warehouse returns approximate answer

Rewriter

Data

Ware-

house

SQL

Query Q

Network

Q’

Result 
(w/ error bounds)

HTML

XML

Warehouse

Data Updates

AQUA

Synopses

AQUA

Tracker

Browser

Excel

[Sigmod’98,…]
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Precomputed, Streaming Synopses

Our Insights (circa 1996)

• Precomputed is often faster than on-the-fly

– Better access pattern than sampling

– Small synopses can reside in memory

• Compute synopses via one pass streaming

– Seeing entire data is very helpful: provably & in 

practice (Biased sampling for group-bys, Distinct value 

sampling, Join sampling, Sketches & other statistical functions)

– Incrementally update synopses as new data arrives

Bottom Line:
Orders of magnitude faster on DSS queries
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Example: Distinct-Values Queries

select count(distinct o_custkey) Example using

from orders TPC-D/H/R

where o_orderdate >= ‘2014-05-28’          schema

• How many distinct customers placed orders
in past year?

– Orders table has many rows for each customer, 
but must only count each customer once 
& only if has an order in past year

select count(distinct target-attr)

from rel Template

where P
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Distinct-Values Query Approaches

• Estimate from Random Sample

– Statistics, Databases, etc

– Lousy in practice

– [Charikar’00] Need linear sample size 

• Flajolet-Martin‘85

– One-pass algorithm, stores O(log u) bits

– Only produces count, can’t apply a predicate

• Our Approach: Distinct Sampling

– One-pass, stores O(t * log u) tuples

– Yields sample of distinct values, with up to t-size 
uniform sample of rows for each value

– First to provide provably good error guarantees

7 3 
3 7 9 1

7 6
5 distinct?

50 distinct?

10% sample

u=universe size

[VLDB’01]
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Accuracy vs. Data Skew
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Over the entire range of skew :

• Distinct Sampling has 1.00-1.02 ratio error

• At least 25 times smaller relative error than GEE and AE

Data set size = 1M
Sample sizes = 1%

[VLDB’01]
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Scale Down Today

• Hundreds and hundreds of clever algorithms

– Synopsis-based approximations tailored to query families

– Reduce data size, data dimensionality, memory needed, etc

• Synopses routinely used in Big Data analytics 
applications at Google, Twitter, Facebook, etc

– E.g., Twitter’s open source Summingbird toolkit

• Hyperloglog – number of unique users who 
perform a certain action; followers-of-followers

• CountMin Sketch – number of times each query issued 
to Twitter search in a span of time; building histograms

• Bloom Filters – keep track of users who have been 
exposed to an event to avoid duplicate impressions 
(10^8 events/day for 10^8 users)

[Boykin et al, VLDB’14]



16© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

How to Tackle the 
Big Data Performance Challenge 

• Scale Down

• Scale Up the computing resources on a node, 
via parallel processing & faster memory/storage

• Scale Out
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Why Scale Up when you can Scale Out?

• Much of Big Data focus has been on Scale Out

– Hadoop, etc

• But if data fits in memory of multicore then 
often order of magnitude better performance

– GraphLab1 (multicore) is 1000x faster than 
Hadoop (cluster)  

– Multicores now have 1-12 TB memory: most 
graph analytics problems fit!

• Even when data doesn’t fit, will still want to 
take advantage of Scale Up whenever you can
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up to 12 TB Main Memory

8
…

45MB Shared L3 Cache

2 HW 
threads

32KB

256KB

2 HW 
threads

32KB

256KB

18
…

socket

Multicore: 144-core Xeon Haswell E7-v3

45MB Shared L3 Cache

2 HW 
threads

32KB

256KB

2 HW 
threads

32KB

256KB

18
…

socket

Attach: Hard Drives & Flash Devices
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Hierarchy Trends

• Good performance [energy] requires 
effective use of hierarchy

• Hierarchy getting richer

– More cores

– More levels of cache

– New memory/storage technologies

• Flash/SSDs, emerging PCM

• Bridge gaps in hierarchies – can’t just 
look at last level of hierarchy
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Hi-Spade: 
Hierarchy-Savvy Sweet Spot

Ignoring

p
e
r
fo

r
m

a
n

c
e

programming effort

Platform 1

Platform 2

Hierarchy-
Savvy

Goals: Modest effort, good performance in 
practice, robust, strong theoretical foundation

(Pain)-Fully
Aware
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What Yields Good Hierarchy 
Performance? 

• Spatial locality: use what’s brought in

• Temporal locality: reuse it

• Constructive sharing: don’t step on others’ toes

Two design options
• Cache-aware: Focus on the bottleneck level
• Cache-oblivious: Design for any cache size

L2 CacheShared L2 Cache

CPU2

L1

CPU1

L1

CPU3

L1

e.g., all CPUs write B
at ≈ the same time

B

Stepping on toes



22© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Multicore Hierarchies’
Key New Dimension: Scheduling

Scheduling of parallel threads has LARGE 
impact on hierarchy performance

Key reason: Caches not fully shared

L2 CacheShared L2 Cache

CPU2

L1

CPU1

L1

CPU3

L1

Can mitigate (but not solve)
if can schedule the writes

to be far apart in time

Recall our problem scenario:

all CPUs want to write B
at ≈ the same time

B
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Program-centric Analysis

• Start with a portable program description:
dynamic Directed Acyclic Graph (DAG)

• Analyze DAG without reference to 
cores, caches, connections… 

Program-centric metrics

• Number of operations (Work, W)

• Length of Critical Path (Depth, D)

• Data reuse patterns (Locality)

Our Goal: Program-centric metrics + 
Smart thread scheduler delivering 

provably good performance on many platforms 
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Parallel Cache Complexity Model

Decompose task into maximal 
subtasks that fit in space M
& glue operations

Cache Complexity Q*(M,B) =

Σ Space for M-fitting subtasks
+ Σ Cache miss for every

access in glue

M,B parameters either used   
in algorithm (cache-aware) 
or not (cache-oblivious)

MM

M

[Simhadri, 2013]
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Space-Bounded Scheduler

Key Ideas:

• Assumes space use (working set sizes) of tasks
are known (can be suitably estimated)

• Assigns a task to a cache C that fits 
the task’s working set.  Reserves 
the space in C.  Recurses on the 
subtasks, using the CPUs and 
caches that share C (below C in the diagram)

…

… …

… …
C

[Chowdhury, Silvestri, Blakeley, Ramachandran IPDPS‘10]

Cache costs: optimal ∑levels Q
*(Mi) x Ci

where Ci  is the miss cost for level i caches

[SPAA’11]

Experiments on 32-core Nehalem:
reduces cache misses up to 65% vs. work-stealing

[SPAA’14]



26© Phillip B. GibbonsBig Data: Scale Down, Scale Up, Scale Out

Sharing vs. Contention

Sharing: operations that 
share the same memory 
location (or possibly 
other resource)

Contention: serialized access 
to a resource (potential 
performance penalty of 
sharing)

Replace concurrent update with Priority Update:
updates only if higher priority than current



Priority Update has Low 
Contention under High Sharing

5 runs of 108 operations on 40-core Intel Nehalem

Perform well under high sharing

Perform poorly under 
high sharing

[SPAA’13]

*Random 
priorities

*
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Further Research Directions

• Determinism at function call abstraction, 
Commutative Building Blocks, 
Deterministic Reservations for loops,
Use of priority update [PPoPP’12, SPAA’13, SODA’15]

• Scaling Up by redesigning algorithms 
& data structures to take advantage of 
new storage/memory technologies
[VLDB’08, SIGMOD’10, CIDR’11, SIGMOD’11, SPAA’15]
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How to Tackle the 
Big Data Performance Challenge 

• Scale Down

• Scale Up 

• Scale Out the computing to distributed nodes 
in a cluster/cloud or at the edge
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Big Learning Frameworks & Systems

• Goal: Easy-to-use programming framework 
for Big Data Analytics that delivers good 
performance on large (and small) clusters

• Idea: Discover & take advantage of distinctive 
properties of Big Learning algorithms

- Use training data to learn parameters of a model

- Iterate until Convergence approach is common

- E.g., Stochastic Gradient Descent for Matrix Factorization
or Multiclass Logistic Regression; LDA via Gibbs Sampling; 
Page Rank; Deep learning; …



Parameter Servers for Distributed ML

• Provides all machines with convenient access to 
global model parameters

• Enables easy conversion of single-machine parallel 
ML algorithms

▫ “Distributed shared memory” programming style

▫ Replace local memory access with PS access

31

Parameter
Table

UpdateVar(i) {
old = y[i]
delta = f(old)
y[i] += delta

}

UpdateVar(i) {
old = PS.read(y,i)
delta = f(old)
PS.inc(y,i,delta)

}

Single
Machine
Parallel

Distributed
with PS

(one or more 
machines)

Worker 1 Worker 2

Worker 3 Worker 4

† Ahmed et al. (WSDM’12), Power and Li (OSDI’10)



The Cost of Bulk Synchrony

32

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

Threads must wait for each other
End-of-iteration sync gets longer with larger clusters

Precious computing time wasted

Wasted computing time!

Time

But: Fully asynchronous => No algorithm convergence guarantees



Stale Synchronous Parallel (SSP)

Allow threads to usually run at own pace
Fastest/slowest threads not allowed to drift >S iterations apart

Protocol: check cache first; if too old, get latest version from network
Consequence: fast threads must check network every iteration

Slow threads check only every S iterations – fewer network accesses, so catch up!

Iteration0 1 2 3 4 5 6 7 8 9

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3
Thread 1 waits until
Thread 2 has reached iter 4

Thread 1 will always see
these updates

Thread 1 may not see
these updates (possible error)

[NIPS’13]



Staleness Sweet Spot
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• Early transmission of larger parameter changes, 
up to bandwidth limit

• Find sets of parameters with weak dependency
to compute on in parallel

– Reduces errors from parallelization

• Low-overhead work migration to eliminate
transient straggler effects

• Exploit repeated access patterns of iterative 
algorithms (IterStore)

– Optimizations: prefetching, parameter data placement, 
static cache policies, static data structures, NUMA 
memory management

•

Enhancements to SSP

[SoCC’15]

[SoCC’14]



IterStore: Exploiting Iterativeness

Collaborative Filtering (CF) on NetFlix data set, 8 machines x 64 cores 

[SoCC’14]
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Big Learning Systems Big Picture

Framework approaches:

– BSP-style approaches: Hadoop, Spark

– Think-like-a-vertex: Pregel, GraphLab

– Parameter server: Yahoo!, SSP

Tend to revisit the same problems

Ad hoc solutions

Scale 
Down/
Up/Out

techniques

Machine
Learning
problems

What is the entire big picture?
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Unified Scale Down, Scale Up, 
Scale Out Big Data System?

No system combines all three

Research questions:

– How best to combine: Programming & Performance 
challenges

– Scale down techniques for Machine Learning?

E.g., Early iterations on data synopses

– Scale up techniques more broadly applied?
Lessons from decades of parallel computing research

– Scale out beyond the data center?
Lessons from IrisNet project? [Sigmod’03, PC 2003]
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How to Tackle the 
Big Data Performance Challenge

Three approaches to improving performance by 
orders of magnitude are:

• Scale down the amount of data processed or 
the resources needed to perform the processing

• Scale up the computing resources on a node, 
via parallel processing & faster memory/storage

• Scale out the computing to distributed nodes 
in a cluster/cloud or at the edge

Acknowledgment: Thanks to MANY collaborators
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Appendix
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